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Finite volume adaptive solutions using SIMPLE as smoother
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SUMMARY

This paper describes a new multilevel procedure that can solve the discrete Navier–Stokes system
arising from �nite volume discretizations on composite grids, which may consist of more than one
level. SIMPLE is used and tested as the smoother, but the multilevel procedure is such that it does not
exclude the use of other smoothers. Local re�nement is guided by a criterion based on an estimate of
the truncation error. The numerical experiments presented test not only the behaviour of the multilevel
algebraic solver, but also the e�ciency of local re�nement based on this particular criterion. Copyright
? 2006 John Wiley & Sons, Ltd.

KEY WORDS: �nite volume; colocated grids; multigrid; SIMPLE; local re�nement

1. INTRODUCTION

The SIMPLE algorithm [1] and its variants (see Reference [2] for descriptions and references)
are popular methods for the solution of discrete non-linear systems of equations arising from
the discretization of the incompressible Navier–Stokes equations. Like most single-grid
solution methods they have the disadvantage that the larger the grid (in terms of number of
nodes), the larger the number of iterations required to attain a speci�ed level of convergence.
Multigrid [3–5] is a class of methods that overcome this disadvantage by using a series of

progressively coarser grids in addition to the �nest one. Any solver for systems of algebraic
equations may be used in the context of a multigrid method, and in this case, it is called a
smoother rather than a solver. In a multigrid method, the error of a current approximation
compared to the exact solution of the system is considered to be composed of Fourier com-
ponents, and each grid is responsible for the reduction of those components which may be
represented on it and which oscillate rapidly compared to the grid spacing. The e�ciency
of the method depends on the ability of the iterative solver to reduce the rapidly oscillating
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1216 A. SYRAKOS AND A. GOULAS

components of the error faster than the smooth components on each grid. After a number
of iterations of such a solver, the error appears smoother than before, and therefore in the
context of multigrid such solvers are called smoothers. By transferring the solution proce-
dure between grids of various densities, every component of the error will appear oscillatory
on some grid, where it will be e�ciently reduced by the smoother. Therefore, ideally, the
number of iterations (or cycles) required in multigrid methods to attain a speci�ed level of
convergence is small and independent of the density of the �nest grid.
Originally, Gauss–Seidel and line-relaxation smoothers were used, but beginning in the

late 1980s several studies have shown that SIMPLE-like procedures also have smoothing
properties. In References [6, 7] this was shown for staggered grids, while in Reference [8]
an algorithm was derived for colocated grids. In Reference [9] the method was tried on
curvilinear grids, demonstrating high e�ciency, and in References [10, 11] the method was
tried on three-dimensional cases. In References [12–14] it was shown that the method can
handle turbulence models successfully, although the gains are not in general as high as in
the laminar case. In Reference [15] the e�ect of the discretization scheme for the convection
terms on the overall e�ciency was studied. In References [16, 17] it was shown that the
performance of SIMPLE as a smoother is comparable to that of SCGS (Gauss–Seidel-like
smoother) and SCAL (line-relaxation-type smoother). Also, in Reference [18] SIMPLE is
compared with other methods of the same family and it is shown that their performance as
smoothers is not signi�cantly di�erent. A more specialized use of the procedure is presented
in Reference [19], where SIMPLE is the smoother of a multigrid procedure which is used as
a preconditioner for a Newton–Krylov method.
In all these studies, except maybe Reference [13], each of the grids used by the multigrid

procedure covers the entire computational domain. There are cases though where it would be
convenient that each grid is allowed to cover a subset of the domain. Such grids are more
appropriately termed levels, and the corresponding solution techniques are called multilevel
rather than multigrid techniques. Multilevel techniques are convenient in the case of locally
re�ned grids, where �ner levels are added on top of an original grid only in regions of the
�ow �eld where enhanced spatial resolution is required. Multilevel techniques date back to
the work of Brandt [4], who de�ned the technique known as MLAT (multiLevel adaptive
technique) for �nite di�erence discretizations. In the case of �nite volume discretizations
some caution is needed in constructing the multigrid equations for the control volumes (CVs)
which are located at interfaces between di�erent levels. In Reference [5] a method is proposed
for composite grids (i.e. grids composed of di�erent levels) whose nodes identify with the
centres of the CVs. In the present work, a method will be proposed for grids whose nodes
identify with the vertices of the CVs.
The classical SIMPLE=multigrid formulation as described in the studies mentioned above

cannot readily be applied in the case of locally re�ned (composite) grids. In Reference [13]
results of using SIMPLE as smoother on composite grids are presented, but the method
described is precisely the classic one, and the di�culties which arise at the interfaces between
di�erent levels are not addressed. These will be addressed in the present work. A di�erent
approach is adopted in Reference [20], where the composite grid is partitioned into blocks,
each assigned to a di�erent processor, and each block is covered by a single level. The
classic SIMPLE=multigrid method is used within each block, and information is exchanged at
the interfaces between blocks, between successive multigrid cycles. However, in the present
work, the composite grid will not be partitioned into blocks but treated as a whole.
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FINITE VOLUME ADAPTIVE SOLUTIONS USING SIMPLE AS SMOOTHER 1217

In this paper, the emphasis is on how to extend the multigrid procedure to be used on
composite grids, but one also has to choose an appropriate re�nement criterion on which the
construction of the composite grid will be based. In some studies, e.g. References [20, 21],
the grid is re�ned before the calculations are performed, at regions where the �ow �eld is
expected to exhibit strong variation, e.g. boundary layers. A more useful approach is to solve
the equations on a given grid and then re�ne those regions of the grid which are indicated
by a criterion which assesses the quality of the solution. This can be done by examining the
variation of the solution in relation with the grid spacing. For example, a 2nd-order accurate
discretization, like the one used in this paper, is constructed by assuming that the CVs are
small enough such that the �ow variables vary almost linearly within the neighbourhood of
each CV. Therefore, after a solution has been obtained on a given grid, the re�nement criterion
can re�ne those CVs where this assumption does not hold within a selected tolerance. Such
re�nement criteria can be based on estimates of the truncation error (e.g. References [5, 22]),
the �nite element residual (e.g. References [23, 24]) or some other similar quantity (e.g.
Reference [13]). These quantities have the same dimensions as the �ux of the transported
quantity (e.g. mass or momentum) but some criteria (e.g. References [13, 24]) normalize
them by some factor (usually the main diagonal coe�cient of the linearized algebraic system)
to convert them into a quantity which has the same dimensions as the �ow variables. In
this paper, the re�nement criterion is based on the truncation error estimate presented in
Reference [25], which is not normalized but the goal is to reduce the integral of the truncation
error in the domain below some selected value.

2. DISCRETIZATION OF THE DOMAIN INTO FINITE VOLUMES

The continuous space of the �ow �eld under study is divided into quadrilateral CVs, which
are organized into levels (see Figure 1). The grid is constructed as follows. First, level 1 is

Figure 1. A composite grid and its analysis into levels. The local CVs are shown in grey.
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(a) (b) (c)

Figure 2. Grid (a) does not have an underlying grid because the grey CVs are global siblings of local
CVs. Their re�nement results in grid (b) whose underlying grid is (c).

constructed (say, by a structured grid generator) which covers the entire computational domain
and is relatively coarse. Then a second level is added, whose CVs are formed by subdivision
of some (or all) of the CVs of level 1. The subdivision procedure produces four (4) ‘children’
CVs out of each chosen CV of the previous level, by joining the parent CV centre with the
midpoints of its 4 sides. Level 3 is similarly constructed by subdividing some (or all) of the
CVs of level 2 and so on. A restriction is posed on this procedure: at an interface between
two di�erent levels, say k and l, the two levels which meet must be successive, i.e. |k−l|=1.
Once a CV is subdivided into children it is not destroyed but it is retained in the data

structure because it will be needed by the multilevel procedure. Therefore, each level consists
of its global part, i.e. the CVs which do not have children, and its local part, i.e. the CVs
which have children. The sum of the global parts of all levels forms the composite grid,
which is the actual grid used for the discretization of the Navier–Stokes equations.
A composite grid will be denoted by a letter such as h which will also be abstractly

interpreted as the distribution of the sizes of the CVs of the given composite grid in the
computational domain. A multiple of h, say a · h, will denote a composite grid whose CV at
any point of the domain has size (length) a times the size of, and is geometrically similar
to, the corresponding CV of grid h at the same location. Further, it is required that the CV
relates to its neighbours in a similar way that the corresponding CV of grid h relates to its
own neighbours. For an arbitrary grid h it is generally not possible to �nd a grid which ful�ls
the requirements for being a · h, but often one may �nd grids which approximately ful�l these
requirements. An important special case is the following.
Some composite grids have an underlying grid, which is formed by removing all global

CVs from the original grid. Therefore, the global CVs of the underlying grid are precisely
those local CVs of the original grid which do not have ‘grandchildren’. For an underlying
grid to exist, all local CVs of the original grid must have only local siblings (siblings are
the CVs which have a common parent). For example, the grid of Figure 1 does not have an
underlying grid. This grid is reproduced in Figure 2(a), where the global siblings of local
CVs are highlighted in grey. Once these CVs are re�ned, as in Figure 2(b), the underlying
grid shown in Figure 2(c) becomes available. One can ensure that an underlying grid exists
at all stages of the �nite volume solution by requiring that whenever a CV is marked for
re�nement, say due to high truncation error, all it’s siblings are marked as well. In the present
method, the underlying grid is used to estimate the truncation error.
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Figure 3. A CV P with exterior faces and its neighbours.

In the present method the CVs are considered to be logically polygonal, an approach
suggested, for example, in References [2, 13, 26]. According to this approach, the surface
which forms the boundary of each CV is considered to consist of a number of faces, each of
which separates the given CV from another single distinct CV. Therefore, although the CVs
of the present method are quadrilaterals, those CVs which are located at interfaces between
di�erent levels may have more than 4 faces. For example, CV P of Figure 3 has 6 faces and
6 neighbours. The faces which separate two CVs of di�erent level will be called exterior,
while the rest will be called interior, except for boundary faces which coincide with the
domain boundary.
If � is a function de�ned on the computational domain and the computational domain is

discretized by a grid h, then the grid function �h is the discrete function which assumes the
values of � at the centres of the CVs of grid h. The Pth component of �h, which equals the
value of � at the centre of CV P, is denoted as �h;P or (�h)P.

3. THE EQUATIONS AND THEIR DISCRETIZATION

In Cartesian coordinates, the two-dimensional stationary incompressible Navier–Stokes
equations and the continuity equation integrated over a CV P may be written as

NxP(u; v; p)≡
∑
f∈fP

Mx
f=0; N yP (u; v; p)≡

∑
f∈fP

My
f =0; N cP(u; v)≡

∑
f∈fP

Ff=0 (1)

where u and v are the x- and y-components of the velocity vector V= ui + vj; p is the
pressure, fP is the set of all faces of CV P, and Ff, Mx

f, M
y
f are, respectively, the mass �ux

and net momentum �uxes minus forces in the x- and y-directions through face f de�ned as

Mx
f(u; v; p)≡

∫
Sf

�V · nu dS −
∫
Sf

�
(
∇u+ @u

@x
i+

@v
@x
j
)
· n dS +

∫
Sf

pi · n dS (2)
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Figure 4. A face f separating CVs P and N, and related notation.

My
f (u; v; p) ≡

∫
Sf

�V · nv dS −
∫
Sf

�
(
∇v+ @u

@y
i+

@v
@y
j
)
· n dS +

∫
Sf

pj · n dS (3)

Ff(u; v) ≡
∫
Sf

�V · n dS (4)

where Sf is the surface of face f and n is the normal unit vector at each point of the surface,
i and j are the unit vectors in the x- and y-directions, respectively, � is the density and � is
the viscosity of the �uid. The normal unit vector n is assumed to be directed outward of the
CV under consideration, and therefore if f is not a boundary face, then (2)–(3) are de�ned
with opposite sign for the CV which lies on the other side of f.
Equations (1) are discretized as follows. First of all, the spatial derivatives of the variables

(u; v; p) at each CV centre are approximated from their values at the centre of the CV and at
the centres of its neighbours, using the least-squares method described in References [13, 26].
This results in a discrete gradient operator ∇h, with its two Cartesian components ∇xh;∇yh . For
more details on how to construct this operator and about its accuracy see Reference [27].
Then, the �uxes and forces on each face are discretized. Suppose a face f separates CVs

P and N with centres P and N, respectively, with the surface normal pointing from P to N
(see Figure 4). The centre of the face is denoted by c, and c′ denotes the point on the line
PN which is closest to c. Also, points P′ and N′ are such that the segment P′N′ has the
same length as PN and it is perpendicular to the face f and its midpoint is c. Let an overbar
denote a value obtained at point c′ by linear interpolation from the values at points P and N,
and de�ne approximate values of a function � at points c and P′ as

�h; c≡�h; c′ + (∇h�h)c′ · (c − c′) (5)

�h;P′ ≡�h;P + (∇h�h)P · (P′ − P) (6)

Then, the �uxes Mx
f (2) and Ff (4) are approximated by

Mx
h;f(uh; vh; ph)≡ Fh;f · uh; c − �Sf

uh;N ′ − uh;P′

|N′ − P′| − �Sf[(∇
x
huh)c′n

x
f + (∇xhvh)c′nyf]

+ph; cnxfSf (7)
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Fh;f(uh; vh; ph)≡�Sf ·
(
Vh; c · nf + ami SfAf [(ph;P − ph;N )− (∇hph)f · (P−N)]

)
(8)

where

(∇hph)f ≡ 1
2 [(∇hph)P + (∇hph)N ] (9)

Af ≡ �Sf|Vh; c · nf|+ �SV |Vh; c · rot(nf)|+ 2� ·
[
Sf
SV
+
SV
Sf

]
(10)

In the above, nxf; n
y
f are the Cartesian components of the unit vector nf which is perpendicular

to f and points from P to N . Also, Vh; c= uh; c · i+ vh; c · j, SV =(N−P) · nf, and rot : R2→R2
is a function which rotates a vector by 90◦. The �ux My

f (3) is approximated by a �ux
My
h;f which is de�ned similar to (7). De�nition (8) of the discrete mass �ux is taken from

Reference [25], and it contains a pressure term to avoid the appearance of pressure oscillations
in the discrete solution. The real factor ami is included for better control of the pressure term.
Usually, one can use ami=1, except for some rare cases of very coarse grids where ami¡1
is necessary to avoid convergence problems (see References [25, 27] for more details). In the
experiments of Section 6, ami=1 is used unless otherwise speci�ed.
With the above de�nitions, the exact operators Nx; Ny; N c (1) are approximated by the

algebraic operators Nxh ; N
y
h ; N

c
h , which di�er by truncation errors �

x
h; �

y
h ; �

c
h, respectively:

Nxh;P(uh; vh; ph)≡
∑
f∈fP

Mx
h;f; N ch;P(uh; vh; ph)≡

∑
f∈fP

Fh;f (11)

Nxh;P(uh; vh; ph) + �
x
h;P(u; v; p) ·��P=NxP(u; v; p)

Nch;P(uh; vh; ph) + �
c
h;P(u; v; p) ·��P=NcP(u; v)

(12)

where ��P is the volume of CV P, and similarly for Ny, N
y
h , �

y
h . If (12) were substituted into

(1) and the system was solved, one would obtain the exact values uh, vh, ph at the CV centres.
However, this is not possible since the truncation errors are not known. According to the �nite
volume methodology, the truncation errors are dropped from (12) under the assumption that
they have small magnitude, and instead of (1) the following algebraic system is solved:

Nxh (u
∗
h ; v

∗
h ; p

∗
h)=0; N yh (u

∗
h ; v

∗
h ; p

∗
h)=0; N ch (u

∗
h ; v

∗
h ; p

∗
h)=0 (13)

The solution u∗
h ; v

∗
h ; p

∗
h of (13) di�ers from the exact solution uh, vh, ph of (1) by the

discretization error �uh= uh − u∗
h , �

v
h= vh − v∗h ; �ph =ph − p∗

h .
For arbitrary grids, it is shown in Reference [27] that the contributions of the convection and

pressure terms of (7) to the truncation error have a magnitude of O(h), while the contributions
of the viscous terms have a magnitude of O(1). However, on structured grids that come from
the discretization of smooth �elds of dimensionless curvilinear coordinates, where the grid
skewness and expansion vary smoothly between opposite faces of a CV and tend to zero with
grid re�nement, parts of these contributions cancel out between opposite faces of a CV and
what remains is that �xh;P; �

y
h;P ∈O(h2) for each CV P. (The skewness of a face may be de�ned

as the ratio |c−c′|=|N−P|, and the expansion as the ratio |(N+P)=2−c′|=|N−P|—see Figure 4).
Similarly, in the general case �ch ∈O(h) but on smooth structured grids �ch ∈O(h2). Therefore,
many numerical experiments, e.g. in References [25, 27], show that on smooth structured
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grids �uh; �
v
h; �

p
h ∈O(h2) also. A complication arises at boundary CVs, where �xh;P; �

y
h;P ∈O(1)

and �ch;P ∈O(h) because (7) or (8) are not used for the boundary face, and therefore the
truncation error contributions of (7) and (8) of the face which is opposite to the boundary
face are not cancelled out. However, as numerical experiments have shown, it appears that
these truncation errors of the boundary CVs do not a�ect the overall O(h2) convergence rate of
the discretization errors. Theoretical explanations for this are proposed in References [28, 29]
for the case of the di�usion terms.
For a composite grid h, let V eh be the set of all CVs which have an exterior face, and

V enh be the set of all CVs which do not belong to V eh but have at least one immediate
neighbour which belongs to V eh . Then it is shown in Reference [27] that �

x
h;P; �

y
h;P ∈O(1)

for all P ∈V eh ∪V enh and �ch;P ∈O(h) for all P ∈V eh . This is because skewness and expansion
of exterior faces are large and do not reduce with grid re�nement (see Figure 3). However,
experiments in Section 6 of the present work suggest that again this does not a�ect the O(h2)
convergence rate of the discretization error. This may be due to cancellation between parts
of the truncation errors of the coarse CV and the pair of �ne CVs, which meet at a level
interface (e.g. CVs P; N3; N4 of Figure 3). Of course, these truncation errors occur at di�erent
locations in space, but as the grid spacing h reduces such triads of CVs tend to identify with
single points in space.

4. TRUNCATION ERROR ESTIMATE AND LOCAL GRID
REFINEMENT CRITERION

The re�nement criterion that will be used in the context of this work is based on an esti-
mate of the truncation error. The truncation error is estimated with the method proposed in
Reference [25]. The truncation error estimate �x∗h is given by

�x∗h =−
1

2p − 1 I
h
2h[[��]

−1 ·Nx2h(I 2hh u∗
h ; I

2h
h v

∗
h ; I

2h
h p

∗
h)] (14)

The estimates �y∗h ; �
c∗
h are given by the same formula with N

x
2h replaced by N

y
2h and N

c
2h, respec-

tively. In the above, grid 2h is the underlying grid of grid h and the operators Nx2h; N
y
2h; N

c
2h

are de�ned on grid 2h using the same discretization schemes as Nxh ; N
y
h ; N

c
h , and [��]

−1 is
a diagonal matrix whose Pth diagonal element equals 1=��P, the reciprocal of the volume
of CV P of grid 2h. The linear operator I 2hh is called a restriction operator and it transfers a
grid function from grid h to grid 2h. Likewise, the prolongation operator I h2h transfers a grid
function from grid 2h to grid h. It was found that the particular choice of the restriction and
prolongation operators does not have a strong impact on the overall e�ciency of the local
re�nement method. The 3rd-order accurate restriction operator and the prolongation operator
used in Reference [25] are also adopted in the present work. Finally, p is the order of accuracy
of the discretization, which is assumed to be p=2.
The local re�nement criterion used here has as an ultimate goal to reduce the integral of

the truncation error below some limit, while simultaneously distributing it roughly equally
among all CVs of the grid. The limit can be set as follows. Given reference momentum
and mass �uxes Qmom and Qmas, respectively, which are of the order of the momentum and
mass �uxes in the computational domain, and an appropriate real number r� 1, the goal
is to reduce the integrals of the momentum and continuity truncation errors below r� ·Qmom
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and r� ·Qmas, respectively. The (approximate) integrals of the truncation errors are de�ned as∑
P |�h;P| ·��P for each truncation error, where summation is over all CVs P of grid h, and

��P is the volume of CV P. This goal may be achieved by marking for re�nement every
CV P of grid h which does not ful�l the following condition:

|�x;yh;P| ·��P6
r� ·Qmom
#Vh

; |�ch;P| ·��P6
r� ·Qmas
#Vh

(15)

where #Vh is the number of CVs in grid h. When (15) is satis�ed by all CVs of the grid
then

∑
P |�h;P| ·��P6r� ·Q as can be easily seen by summing (15) of all CVs of the grid

(#Vh in number). Of course, since the exact truncation errors are not known one has to use
estimates (14). After re�nement of all CVs which do not satisfy (15), a new grid arises on
which the equations are solved. Then again re�nement takes place according to criterion (15)
and so on, until a grid is reached such that all its CVs satisfy (15). Criterion (15) is dynamic
in the sense that a CV of a grid h which satis�es (15) may not satisfy it in a subsequent
grid h′, and thus be re�ned, because the number of CVs has increased (#Vh′¿#Vh). In this
way the procedure is aimed at reducing the integrals of the truncation errors below r� ·Q by
re�ning the CVs with the largest contribution to these integrals.
The discrete operators (11) of any particular CV, and therefore also the truncation errors,

depend not only on the size of P itself, but also on the sizes of its neighbours, so if P does
not satisfy (15) then its neighbours will be re�ned as well.
A complication arises near the interfaces between di�erent levels of the composite grid

where, as has been mentioned before, �xh; �
y
h ∈O(1) (p=0) and �ch ∈O(h) (p=1). Therefore,

as far as the truncation error is concerned the assumption that p=2 in (14) is not accurate
there. Furthermore, in these regions the truncation error distribution is discontinuous and so
I h2h in (14), which is based on an assumption of smoothness, is not appropriate. Despite these
problems, numerical experiments show that estimate (14) predicts the zero-order accuracy
of the discretization, i.e. that the truncation error estimate is large and does not reduce with
re�nement. This poses a problem to the local re�nement procedure. According to criterion (15)
the CVs of the set V eh ∪Vneh must be re�ned, but this o�ers no real bene�t as the truncation
error will not reduce (�h ∈O(1)). On the next grid h′, the errors �x∗h′ ; �y∗h′ will still be high
at the CVs of V eh′ ∪Vneh′ causing re�nement to take place and so on, resulting in perpetual
re�nement with no real bene�t. This behaviour is indeed observed in practice. To overcome
this problem in the present work it has been chosen not to allow re�nement at these regions.
Since the truncation error is e�ectively estimated on the underlying grid 2h, re�nement must
not be allowed at the CVs of grid h which cover V e2h ∪Vne2h . That is, re�nement is not allowed
within a depth of 4 CVs from the level interface.
A similar situation occurs at domain boundaries, where also �h ∈O(1) as has been men-

tioned. However, in this case because it is di�cult to determine a priori the required grid
�neness at the boundary, local re�nement is allowed and the number of re�nements is limited
by setting a maximum number of grids to be constructed.

5. SIMPLE=MULTILEVEL PROCEDURE FOR LOCALLY REFINED GRIDS

In this section the solution of the discrete system (13) on a �xed composite grid, denoted by
the capital letter H, is considered. Lowercase letters such as h will now refer to a particular
level of the composite grid H. Also, since in this section the interest is not in the exact
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Figure 5. Part of a composite grid displaying 3 levels, with emphasis on the middle level.
The local part of the middle level is shown in grey and the �nest level is shown in dashed
line. The centres of the CVs of the middle level are also marked, as are the centres of the

neighbouring CVs of the other levels.

di�erential solution u; v; p of (1), let now ûH ; v̂H ; p̂H be used instead of u
∗
h ; v

∗
h ; p

∗
h to denote

the exact solution of the algebraic system (13), and let uH ; vH ; pH denote an estimate of this
solution in the iterative solution procedure. With this notation the algebraic system (13) to
be solved is written as

NxH (ûH ; v̂H ; p̂H )=0; N yH (ûH ; v̂H ; p̂H )=0; N cH (ûH ; v̂H ; p̂H )=0 (16)

Suppose for simplicity that the composite grid H consists of only 3 levels with global parts,
h; 2h and 4h, as depicted in Figure 5. During the multilevel cycle, the iterative procedure
visits one by one all the levels of the grid and it solves on both the global and local part of
each level. Therefore, a grid function �h de�ned on a level h will be written as �h=(�lh; �

g
h)

where �lh; �
g
h contain the values of �h at the local and global parts of level h, respectively.

The exact solution may be written as ûH =(û
g
h; û

g
2h; û

g
4h), etc. (of course, it is de�ned only

at global CVs). Now, suppose that at some point of the iterative procedure when the current
estimate of the solution is u∗

H =(u
∗g
h ; u

∗g
2h ; u

∗g
4h), etc. iterations pass from level h to level 2h.

The current estimate u∗
H ; v

∗
H ; p

∗
H satis�es (16) up to a residual. In particular, on level h we

would have that

Nxh (u
∗
h ; v

∗
h ; p

∗
h)=−rxh ; Nyh (u

∗
h ; v

∗
h ; p

∗
h)=−ryh ; N ch (u

∗
h ; v

∗
h ; p

∗
h)=−rch (17)

(actually the left-hand sides of (17) also involve variables of some of the CVs of level 2h).
If there were a still �ner level, then level h would also have a local part, and apart from the
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subset of (16) which correspond to level h, (17) would also include equations for the local
CVs, which would also be satis�ed up to a residual. The form of these local equations will
be described shortly.
Now, the iterative procedure moves to level 2h. First, the current solution is restricted from

level h to level 2h (including the current solution at the local part of level h) and stored
as ũ∗

2h= I
2h
h u

∗
h ; ṽ

∗
2h= I

2h
h v

∗
h ; p̃

∗
2h= I

2h
h p

∗
h (de�ned only on the local part of 2h), where I

2h
h is a

restriction operator which is di�erent from that of Section 4. The experience of the authors
has shown that operator (18) is suitable also for high Reynolds number �ows:

(I 2hh �h)P=

∑
C∈CP

�h;C ·��C∑
C∈CP

��C
(18)

where CP is the set of 4 children (of level h) of CV P (of level 2h).
On level 2h the equations solved are such that their solution, say u2h, v2h, p2h, is such that:

On the global part of 2h, the new solution ug2h; v
g
2h; p

g
2h is a better estimate to û

g
2h; v̂

g
2h; p̂

g
2h

than the previous estimate u∗g
2h ; v

∗g
2h ; p

∗g
2h . And on the local part of 2h, the solution u

l
2h; v

l
2h; p

l
2h

produces corrections ul2h− ũ∗
2h; v

l
2h− ṽ∗2h; pl2h− p̃∗

2h which when prolonged back to level h give
an estimate which satis�es the equations of level h more closely than the previous estimate
u∗
h ; v

∗
h ; p

∗
h . The equations of level 2h are the following.

Global CVs with only global neighbours (CVs indicated as • and ◦ in Figure 5): At these
CVs the equations solved are precisely those of the composite grid, i.e. the corresponding
subset of (16). For CVs ◦, the variables at their coarse neighbours + are not treated as
unknowns but as �xed Dirichlet boundary values (u∗g

4h ; v
∗g
4h ; p

∗g
4h). The discretization stencils of

CVs ◦ also involve the gradients at CVs +, which in turn involve the variables at CVs ◦;
therefore, in our procedure we have chosen to update the values of the gradients at CVs +
after each iteration on level 2h. Concerning the gradients, it should also be mentioned that
because the equations of some of these global CVs also make use of the gradients at global
CVs of type , the gradients at CVs must be calculated grid-wise (like in Figure 3) and
not levelwise, i.e. assuming that the neighbours of the CVs are the �ne CVs × and not
the local CVs . For the calculation of these gradients in the present work the values at CVs
× were assumed to be �xed at u∗g

h ; v
∗g
h ; p

∗g
h rather than updating them after each iteration

according to the corrections produced at CVs .
Local CVs (CVs indicated as in Figure 5): First, we consider the momentum equations.

Suppose a local CV P of level 2h, and CP the set of its children for which equations of the
type (17) hold. According to the multigrid methodology (see, e.g. Reference [5] or [27]) if the
iteration errors and the residuals per unit volume which correspond to the estimate u∗

h ; v
∗
h ; p

∗
h

are smooth enough compared to the spacing of level h, then the subset of 4 x-momentum
equations of (17) which correspond to the children of P may be approximated by a single
x-momentum equation of CV P as

Nx2h;P(u2h; v2h; p2h)=N
x
2h;P(ũ

∗
2h; ṽ

∗
2h; p̃

∗
2h) +

∑
C∈CP

rxh;C (19)

Equations (19) are de�ned only at the local part of 2h. The operator N2h need not be the
same as N2h, but it must approximate the same exact integral-di�erential operator N (1). If
P has a global neighbour, then the left-hand side of (19) depends also on ug2h; v

g
2h; p

g
2h, and
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the �rst term of the right-hand side depends also on u∗g
2h ; v

∗g
2h ; p

∗g
2h . Therefore, if the equations

of the global CVs are not satis�ed, then the solution u2h; v2h; p2h of (19) will be di�erent
from ũ∗

2h; ṽ
∗
2h; p̃

∗
2h even if rh=0. The y-momentum equations are treated in the same way.

Now, we turn to the continuity equation. Normally, the continuity equation of local CVs
should be de�ned as (19) with superscript x replaced by c. However, following the usual
SIMPLE=multigrid algorithm, we depart slightly from this rule and de�ne the local continuity
equation similar to the global continuity equation, as∑

f∈fP
F2h;f=

∑
f∈fP

{F̃2h;f + [F2h;f(u2h; v2h; p2h)− F2h;f(ũ∗
2h; ṽ

∗
2h; p̃

∗
2h)]}=0 (20)

where

F̃2h;f=
∑
c∈cf

Fh; c(u∗
h ; v

∗
h ; p

∗
h) (21)

In the above, fP is the set of 4 local faces of the local CV P, and cf is the set of 2 child
faces of the local face f. In (20), F2h;f are de�ned by (8). If f separates P from a global CV,
then for the calculation of F2h;f(ũ∗

2h; ṽ
∗
2h; p̃

∗
2h) in (20) and Fh; c in (21) values from u∗g

2h ; v
∗g
2h ; p

∗g
2h

will also be used. In (21), Fh; c is to be replaced by Fh; c if the child c is itself local. In other
words, the mass �ux F̃2h;f is de�ned as the sum of the mass �uxes through the children of
f at the time of the restriction from level h to level 2h; and the mass �ux F2h;f is de�ned
as equal to the restricted mass �ux F̃2h;f plus a correction (the term in square brackets in
(20)) which is due to the improvement of the �ow �eld estimate. A slight improvement of
this de�nition of the local mass �uxes will be proposed in Section 6. Summarizing, the local
continuity equation is de�ned as

∑
F2h;f=0, like its global counterpart, but the mass �uxes

though local faces, F2h, are de�ned di�erently than F2h, using (20) instead of (8). This is
necessary so that the local continuity equations will produce corrections, which are driven by
the residuals of the �ner level. In fact, by summing the continuity equations of the children
of P, it is not hard to see from de�nition (21) that∑

f∈fP
F̃2h;f=−

∑
C∈CP

rch;C (22)

Using (22), Equation (20) becomes∑
f∈fP

F2h;f(u2h; v2h; p2h)=
∑
f∈fP

F2h;f(ũ∗
2h; ṽ

∗
2h; p̃

∗
2h) +

∑
C∈CP

rch;C (23)

which is precisely (19) with superscript x replaced by c. So in fact it is not the continuity
operator which is de�ned di�erently on local and global CVs, but the momentum operator
because Nx2h uses the mass �uxes F2h while N

x
2h uses the mass �uxes F2h.

Global CVs with local neighbours (CVs indicated as in Figure 5): This is the most
di�cult case. The equations must involve unknowns of the same level, and therefore the
unknowns at CVs . However, at the overall convergence of the multigrid procedure the
composite grid equations must be satis�ed, which involve the global unknowns at CVs × of
level h and not the local unknowns at CVs of level 2h. This is easy to achieve as far as
the continuity equation is concerned. Indeed, if P is a CV of type and gP, sP are the sets
of global and local (sub-exterior) faces of P (regarding P in a levelwise manner, bounded
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by 4 faces) then its continuity equation has the natural form:∑
f∈gP

F2h;f(u2h; v2h; p2h) +
∑
s∈sP

F2h; s(u2h; v2h; p2h)=0 (24)

At overall convergence of the multigrid cycles the ‘correction’ term in square brackets in (20)
of the local mass �uxes becomes zero and F2h = F̃2h. Substituting this into (24) and using
(21), (24) becomes∑

f∈gP
F2h;f(u2h; v2h; p2h) +

∑
s∈sP

∑
c∈cs

Fh; c(uh; vh; ph)=0 (25)

(Fh; c also involve values from u2h; v2h; p2h) which is precisely the composite grid equation,
i.e. the Pth continuity equation of system (16), as is required.

A similar reasoning lies behind the construction of the momentum equations. Let the net
x-momentum �uxes (7) be written as Mx

h;f[(u
1
∗; u

2
∗); (v

1
∗; v

2
∗); (p

1
∗; p

2
∗)] to indicate that face f

separates two CVs and the variables of the �rst of these CVs belong to the arrays u1∗; v
1
∗; p

1
∗

while the variables of the second CV belong to u2∗; v
2
∗; p

2
∗. Then, to simplify the descriptions

which follow, de�ne the following abbreviations, where e, f, s denote, respectively, an exterior
face of level h, a global face of level 2h, and a local sub-exterior face of level 2h:

Mx;∗
h; e ≡Mx

h; e[(u
∗g
2h ; u

∗g
h ); (v

∗g
2h ; v

∗g
h ); (p

∗g
2h ; p

∗g
h )]

Mx
2h;f ≡Mx

2h;f[(u
g
2h; u

g
2h); (v

g
2h; v

g
2h); (p

g
2h; p

g
2h)]

Mx
2h; s ≡Mx

2h; s[(u
g
2h; u

l
2h); (v

g
2h; v

l
2h); (p

g
2h; p

l
2h)]

Mx;∗
2h; s ≡Mx

2h; s[(u
∗g
2h ; ũ

∗
2h); (v

∗g
2h ; ṽ

∗
2h); (p

∗g
2h ; p̃

∗
2h)]

(26)

Thus, Mx;∗
h; e is the estimate of the net x-momentum �ux through face e at the time of restriction

from level h to level 2h; Mx
2h;f and M

x
2h; s are the �uxes through f and s which result from

the solution of the system of (both local and global) equations of level 2h; and Mx;∗
2h; s is the

�ux through s which is calculated immediately after restriction from level h to level 2h.
Then, with reasoning similar to that for the continuity equation, the x-momentum equation

for a CV P of type is de�ned as

∑
f∈gP

Mx
2h;f +

∑
s∈sP

[ ∑
e∈cs

Mx;∗
h; e + (M

x
2h; s −Mx;∗

2h; s)
]
=0 (27)

That is, the momentum �ux through each local face s of P is de�ned as equal to the sum of
Mx;∗
h; e , the estimates of the �uxes through the exterior children of s at the time of restriction,

plus a correction term (in parentheses in (27)) which is due to the improvement of the �ow
�eld estimate. At convergence this correction term is zero, and what remains is precisely the
composite grid equation, the Pth x-momentum equation of system (16).
This completes the de�nition of the equations at all CVs of level 2h. After the required

number of iterations have been performed at level 2h, iteration may pass to a still coarser
level 4h, etc. At some point of the multilevel cycle, iteration will return to level 2h and then
it will move up to level h. At this point prolongation of the corrections produced at the local
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part of 2h will occur, to give an improved estimate of the solution of the equations of level h:

uh← u∗
h + amgI

h
2h(u

l
2h − ũ∗

2h) (28)

and similarly for v; p. In (28) amg is a real number, usually amg=1 but a smaller number
may be used if convergence problems occur, and I h2h is a prolongation operator, which in the
present work is de�ned as

(I h2h�2h)C =�2h;P + (∇2h�2h)P · (C− P) (29)

where P is the parent of C, and P; C are their centres.
The initial guess for the solution of the equations of a particular level, say 2h, is ũ∗

2h; ṽ
∗
2h; p̃

∗
2h

at the local part and u∗
2h; v

∗
2h; p

∗
2h at the global part. Then it is not di�cult to see that if the

present estimate uH ; vH ; pH equals the exact solution ûH ; v̂H ; p̂H of (16), then the initial
guess at any level satis�es the equations of that particular level (both local and global) and
zero corrections are produced at the local parts. In other words, the multilevel cycle does not
alter the exact solution.
Since the adopted discretization uses the central di�erence scheme (5) (CDS), the solution

of the system of equations of any particular level may exhibit oscillations, as is discussed in
Reference [25]. The problem of pressure oscillations is taken care of by the use of momen-
tum interpolation for the mass �uxes in both local and global equations of each level—see
Reference [25] (however, see Section 6 for further discussion). Some care is needed to avoid
velocity oscillations which may appear especially at coarse levels and high Reynolds num-
bers. For the multilevel procedure, the problem is twofold: First, during the restriction phase,
say from level h to level 2h, any velocity oscillations in the �eld u∗

h ; v
∗
h ; p

∗
h may re�ect in

a restricted �eld ũ∗
2h; ṽ

∗
2h; p̃

∗
2h which causes the multilevel procedure to fail to converge.

This has indeed been observed in practice at high Reynolds numbers when other restric-
tion operators are used, but it seems that the operator (18) overcomes this problem. Con-
versely, during the prolongation of the corrections from level 2h to level h, if the solution
u2h, v2h contains oscillations then the corrections will also be oscillatory. These oscillations will
appear to have a greater wavelength compared to the mesh spacing on level h than on level
2h. In fact, since at any level the equations are not solved exactly but only a few iterations
are performed, these oscillations will survive until prolongation to the �nest levels. On these
�nest levels the wavelength of the oscillations will appear to be very large compared to the
mesh spacing, and therefore the smoother will be unable to reduce them. The impact on the
overall e�ciency of the multilevel procedure will be detrimental. One known solution to this
problem (see Reference [2]) is to de�ne the local momentum �uxes using a blend of the CDS
with the 1st order upwind scheme (UDS) for the convection terms. That is, replace Fh;f · uh; c
by Fh;f · [ac · uh; c + (1 − ac) · uUDSh; c ] in (7), where 06ac¡1 and u

UDS
h; c is the value of u at the

centre of the face as given by the 1st-order UDS scheme (it is equal to the value at the
centre of the adjacent CV from which �uid �ows towards the face). The global �uxes remain
unaltered so that the composite grid equations (16) still use pure CDS. This change results
in a smoother solution within the local part of each level, but because the local operator N2h
departs from Nh, the corrections produced are less e�ective and the convergence rate of the
multilevel procedure drops. This will be shown in Section 6. Alternatively, it has been found
that it is more e�cient to leave the discretization of the local momentum �uxes as it is and
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to smooth the corrections prior to prolongation using a smoothing operator S2h, so instead of
(28) prolongation takes place as follows:

uh← u∗
h + amgI

h
2hS2h(u

l
2h − ũ∗

2h) (30)

The corrections of v are similarly smoothed, while the corrections of p need not be smoothed.
The smoothing operator was inspired by the fact that, as discussed in Reference [25], in the
absence of momentum interpolation an oscillatory pressure �eld results, but which results in
near-correct values of pressure at face centres. Therefore, Sh is de�ned as

(Sh�h)P=
1
4

∑
f∈fP

�h; c′ (31)

where fP is the set of 4 faces of CV P (in levelwise treatment every CV has exactly 4 faces)
and the overbar denotes linear interpolation at point c′ of face f from the values at adjacent
CV centres. The e�ciency of this technique will be demonstrated in Section 6.
Any smoother can be used in the context of the multilevel procedure as described so far.

Now, some particular issues which concern the use of SIMPLE will be addressed. First of
all, a problem arises in the presence of outlet boundaries, when the outlet boundary condition
is implemented in the usual way (e.g. as in the CAFFA code provided with Reference [2]—
see also Reference [27]). In this implementation, after solution of the velocity linear systems
within each SIMPLE outer iteration the outlet mass �uxes are scaled to satisfy overall mass
conservation through the boundaries of the domain. This actually interferes with the dis-
cretization of the equations and produces a �nal solution which does not exactly ful�l the
zero-gradient condition at the outlet—see Reference [27] for more details. The problem with
the multilevel procedure is that since a particular level may not include all global outlet faces,
it is di�cult to �nd a suitable way to update the outlet mass �uxes of the particular level
while simultaneously ensuring global mass conservation. To overcome this problem it was
chosen in this work not to alter the outlet mass �uxes during SIMPLE smoothing sweeps
on any particular level, but to perform global SIMPLE sweeps on the whole composite grid
between multilevel cycles. These will be termed composite-grid smoothing sweeps in contrast
to the level smoothing sweeps which occur within each multilevel cycle.
Another complication arises at the exterior CVs of each level. Because the coarse CVs +

(Figure 5) do not contribute unknowns to the system of equations of level 2h, it so happens
(see Reference [27]) that the exterior faces of 2h may have negative contributions to the
main diagonal of the matrix of the velocity linear systems of each SIMPLE sweep on level
2h. Thus, for the solution of these systems we used unpreconditioned GMRES which does
not require strict diagonal dominance. It was observed that usually 4–5 inner iterations su�ce
to achieve the full rate of convergence of outer iterations. Also, for the construction of the
pressure correction system of SIMPLE, the mass �ux correction through a face assumes a form
which is a function of the main diagonal coe�cients of the velocity linear systems of the CVs
which lie on either side of the face. For exterior faces, during level sweeps, the coe�cient of
the �ne CV is unsuitable as mentioned above, and the coe�cient of the coarse CV does not
exist. However, since composite-grid smoothing sweeps occur between multilevel cycles, we
store the contributions of exterior faces to the matrix of coe�cients of the pressure correction
system during each composite-grid sweep and use them within the immediately following
cycle. Since at each level sweep the exterior face mass �uxes are also corrected, the pressure
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Figure 6. Schematic representation of the W 3=V (v1; v2) cycle on a grid with 5 levels. At red, blue,
green dots v1; v2; v1 + v2 SIMPLE relaxations are performed, respectively. At black dots either direct

solution or many relaxations are performed.

correction system becomes diagonally dominant and always has a single solution (except if
the particular level does not have exterior faces). We use ILU(0)-preconditioned conjugate
gradients for the pressure correction system.
Finally, the matter of the type of multilevel cycle must be brie�y addressed. For structured

grids it has been found that for medium and high Reynolds numbers W cycles are usually
more e�cient than V cycles. However, for composite grids this may not be the case if the
�nest levels have very few CVs. In such cases it is often more e�cient to use a cycle which
resembles a W cycle at the lower levels and a V cycle at the higher levels, like the one shown
in Figure 6. In the following, the notation Wk=V (v1; v2)-s means a multilevel procedure where
on levels up to the kth 2 cycles are used to solve the problem of the immediately �ner level,
while 1 cycle is used on levels ¿k. Also, v1, v2 are the number of pre-smoothing and post-
smoothing iterations, and s is the number of composite-grid sweeps between multilevel cycles.

6. NUMERICAL EXPERIMENTS

6.1. Square lid-driven cavity

The square lid-driven cavity problem is probably the most often used case to test new meth-
ods for incompressible �ows. It is used in many of the papers mentioned in Section 1
[6, 7, 12, 13, 15, 16, 18, 19]. Usually, methods are validated by comparing their results against
those of Reference [30], but these results are not very accurate. For the particular case of
Re=1000 the very accurate results of Reference [31] are available. In the following, the cavity
has side L=1m while the lid velocity and �uid density are �xed at V =1m=s (in the positive
x-direction) and �=1kg=m3. The viscosity � is varied according to the required Reynolds
number Re=�VL=�. The quantities Qmom and Qmas are de�ned as Qmom =�LV 2 = 1 kgm=s

2

and Qmas =�LV =1kg=s.
For comparison, Table I contains descriptions of the convergence of the classic SIMPLE=

multigrid method [8] for various cases. Uniform grids with square CVs are used. For each
case the table displays two numbers: The number of cycles required to reduce the maximum
residuals per unit volume of all equations below 10−8 is displayed on the left. On the right
(in italic), the corresponding residual reduction factor de�ned as

q= m

√
‖Rm0+mh ‖∞
‖Rm0h ‖∞

(32)
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Table I. Square lid-driven cavity, uniform grids: For each case, the left column shows the number of
cycles of the classic SIMPLE=multigrid procedure [8] required to reduce the maximum residual per unit
volume below 10−8, and the right column (in italic) shows the corresponding reduction factor (32).

Full multigrid (FMG) is used in each case starting from the coarsest level 8× 8.
Re=100 Re=1000 Re=1000 Re=5000 Re=10 000

Grid V (2; 2)-1 V (2; 2)-1 W (2; 2)-1 W (2; 2)-1 W (2; 2)-1

32× 32 20 0.38 52 0.73 34 0.60 114 0.87 163 0.90
64× 64 21 0.36 56 0.74 25 0.52 95 0.83 155 0.90
128× 128 22 0.36 51 0.74 22 0.39 54 0.73 104 0.85
256× 256 24 0.36 49 0.74 23 0.37 29 0.58 64 0.73
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Figure 7. Square lid-driven cavity, 256× 256 grid: Convergence histories of the
x-momentum residuals per unit volume using the classic SIMPLE=multigrid method, with-
out FMG. The solid line corresponds to smoothing of corrections according to (30), and
the chained lines to the use of CDS=UDS blending for the local momentum �uxes with the

blending factor ac indicated on each curve, without correction smoothing.

is given, where Rkh;P= r
k
h;P=��P is the residual per unit volume after cycle k, and m, m0 are

large enough so that the rate of convergence has stabilized but q is not in�uenced by the
�rst m0 cycles where the rate of convergence may be irregular. The maximum value over
the momentum and continuity equations is displayed (usually, the reduction factors are nearly
equal for the three sets of equations). Unless otherwise indicated full multigrid (FMG) is
used with parameters au=0:8, ap=0:2 (SIMPLE underrelaxation factors), amg=1, ami=1,
and the coarsest level (CL) is level 1 (8× 8 CVs). For low Reynolds numbers V cycles are
more e�cient, while W cycles are more e�cient for medium and high Reynolds numbers.
For Re¿5000 velocity oscillations make it impossible to attain convergence unless either the
velocity corrections are smoothed according to (30) or a blend of CDS=UDS is used for the
local convective momentum �uxes. We have found that it is always more e�cient to smooth
the corrections, as demonstrated in Figure 7, and it is this technique which was used to obtain
the results for Re=5000; 10 000 in the tables.
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Table II. Like Table I, but using the modi�ed SIMPLE=multigrid algorithm of Section 5.

Re=5000
Re=100 Re=1000 Re=1000 Re=5000 W (2; 2)-1

Grid V (2; 2)-1 V (2; 2)-1 W (2; 2)-1 W (2; 2)-1ami =0:1 ami =0:2CL=2

32× 32 20 0.35 56 0.76 36 0.60 130 0.88 226 0.93
64× 64 20 0.36 53 0.75 25 0.49 124 0.87 156 0.90
128× 128 22 0.37 52 0.75 22 0.39 127 0.88 91 0.84
256× 256 23 0.37 48 0.78 22 0.36 134 0.88 73 0.77

Table II shows the same data for the new SIMPLE=multilevel method described in Section 5.
For low and medium Reynolds numbers the results are similar, but the method becomes very
ine�cient at high Reynolds numbers. In fact, it is not possible to attain convergence unless
ami is dropped to 0.5 for Re=2000 (not shown) and 0.1 for Re=5000, resulting in great
ine�ciency. The larger the distance between the �nest and the coarsest level, the smaller ami
must be. For example, Table II shows that by letting the coarsest level CL=2 (16× 16 CVs)
it is possible to increase ami to 0.2, increasing the e�ciency. The problem seems associated
with momentum interpolation, and an outline of a possible explanation is that it is caused by
the fact that local mass �uxes (20) contain not one but two separate pressure terms. The �xed
pressure term of F2h;f(ũ∗

2h; ṽ
∗
2h; p̃

∗
2h) may be relatively large, especially at coarse levels because

it is calculated from the restricted pressure �eld, and it must be balanced by the ‘dynamic’
pressure term of F2h;f(u2h; v2h; p2h) and by the mass �ux change which is due to the velocity
correction. This spoils the corrections to be prolonged back to the �ner levels. On the other
hand, in the classic SIMPLE=multigrid method the local mass �uxes contain a single pressure
term like global mass �uxes, and its magnitude should in general be negligible compared
to the total �ux (see Reference [25]). Now, if F2h;f(ũ∗

2h; ṽ
∗
2h; p̃

∗
2h) in (20) was de�ned with

Af(u2h; v2h) in (8) instead of Af(ũ∗
2h; ṽ

∗
2h) then the sum of the two pressure terms would equal

the single pressure term of the classical SIMPLE=multigrid method involving the pressure
correction, and the two methods would become equivalent. However, this would require that
F2h;f(ũ∗

2h; ṽ
∗
2h; p̃

∗
2h) be re-calculated at every smoothing sweep (because the value of Af(u2h; v2h)

would change) and to avoid this it was chosen instead to replace Af(u2h; v2h) by Af(ũ∗
2h; ṽ

∗
2h)

in de�nition (8) of F2h;f(u2h; v2h; p2h) of (20). This again makes the sum of the two pressure
terms equivalent to a single pressure term involving the pressure correction, but it is not
equivalent to the pressure term of the classic method. The results shown in Table III were
obtained with this method and it is clear that the situation has improved, with ami=1 used
throughout. In the case Re=10000 amg=0:8 had to be used for the velocity, and e�ciency
is somewhat lower than that of the classic method, but still it is considered adequate. This
modi�cation will be used in all subsequent experiments. It should be noted here that the
di�erence between Af(u2h; v2h) and Af(ũ∗

2h; ṽ
∗
2h) becomes greater as Reynolds number increases

as seen from (10) (because their convective parts are di�erent but their viscous parts are the
same). This may explain why the problem occurred at high Reynolds number. The table also
shows the CPU time required by the FMG procedure on a 1.4GHz Pentium 4 processor. The
time required per cycle for the results of Tables I and II is nearly the same as for Table III.
The next step is to allow local re�nement. Starting from level 4 (64× 64) local re�nement

levels are added according to criterion (15). At the upper corners of the cavity the �ow �eld
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Table III. Like Table II, but with the modi�cation of the pressure term of the local mass �uxes described
in Section 6.1. Also shown is the CPU time for the whole FMG procedure on a 1.4GHz Pentium 4.

Re=10 000
Re=100 Re=1000 Re=1000 Re=5000 W (2; 2)-1

Grid V (2; 2)-1 V (2; 2)-1 W (2; 2)-1 W (2; 2)-1 amg=0:8

32× 32 20 0.35 57 0.75 36 0.62 157 0.90 235 0.94
64× 64 20 0.36 55 0.76 25 0.49 114 0.86 219 0.93
128× 128 22 0.37 54 0.76 22 0.39 51 0.73 176 0.92
256× 256 23 0.37 49 0.78 22 0.36 29 0.54 119 0.88

CPU time (s) 183 408 241 407 1519
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1
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Figure 8. The underlying grids of the �nal grids for Re=100 (left) and Re=5000 (right).

is discontinuous and this causes the truncation error to actually increase near the corners as
the grid is re�ned. Therefore, the re�nement criterion cannot be satis�ed and the process of
re�nement must be ended by setting a maximum allowable number of grids. For Re=100 and
5000, r�=0:01 was used and two additional grids were allowed (with level 6 being the �nest).
The underlying grids of the corresponding �nal grids are shown in Figure 8. Local re�nement
occurs at the regions where estimate (14) predicts a high truncation error, that is near the top
lid and corners for Re=100 and at the circumference of the main vortex for Re=5000 (see
Reference [27]). The number of cycles required to reduce the maximum residuals per unit
volume below 10−8 and the corresponding reduction factors are shown in Table IV, where
grid 1 comes from grid 64× 64 with local re�nement, and grid 2 (whose underlying grid is
shown in Figure 8) comes from grid 1. For each grid the �nest level is written in parentheses.
The FMG procedure is used in each case starting from grid 8× 8. For Re=100 V (2; 2)-1
cycles were used and comparison with Table III shows that the number of cycles and the
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Table IV. Square lid-driven cavity, uniform grids. Convergence and CPU time for the FMG procedure
on composite grids. The �nest level of each composite grid is shown in parentheses, and the underlying

grids are shown in Figures 8 and 9.

Re=100 Re=1000 Re=5000
Grid V (2; 2)-1 Wk=V (2; 2)-1 Wk=V (2; 2)-1

1(5) 22 0.36 19 0.37 k =3 113 0.86 k =3
16 0.26 k =4 62 0.74 k =4

2(6) 23 0.37 18 0.38 k =3 112 0.86 k =3
15 0.21 k =4 64 0.76 k =4

36 0.63 k =5

3(7) 17 0.38 k =3
15 0.20 k =4

4(8) 16 0.36 k =3
16 0.20 k =4

CPU time 40 s 641 s k =3 399 s k =3
670 s k =4 298 s k =4

276 s k =5

reduction factors are the same as for the non-composite grids. For Re=5000Wk=V (2; 2)-1
cycles were used with di�erent values of k as shown in the table. In this case, the highest
possible value k=5 proves to be the most e�cient, also in terms of CPU time. A slight
degradation of the convergence rate is observed for grid 2 compared to grid 256× 256.
For Re=1000 r�=0:001 was used and four additional grids were allowed (level 8 being

the �nest) to study the bene�ts of local re�nement comparing with the accurate results of
Reference [31]. The underlying grids of the resulting series of 4 grids are shown in Figure 9.
As expected, because the re�nement criterion is dynamic, not only is a new level added on
each subsequent grid, but also existing levels are extended. The truncation error is highest
at the lid and at the circumference of the main vortex, especially at its right and lower
part. Figure 10 shows the u-velocity discretization error |�uh| (h again denotes the whole grid,
not a particular level) along the vertical centreline on various composite and non-composite
grids, calculated at the points and from the u-values given in Reference [31], which are
regarded as ‘exact’. The distance between the distributions of the non-composite grids is in
accordance with the 2nd-order accuracy of the method. Composite grid 1 and grid 128× 128
have about the same number of CVs and o�er nearly identical accuracy. The accuracy o�ered
by composite grid 2 is very close to that of grid 256× 256 although it has half as many
CVs. Composite grid 3 has about the same number of CVs as grid 256× 256 but o�ers a
clearly more accurate solution. The accuracy of composite grid 4 is comparable to that of
the much larger (in terms of number of CVs) grid 512× 512, except near the centre of the
cavity where, however, the error of the 512× 512 solution is already very small and so this
di�erence is not so signi�cant. The addition of a relatively large number of CVs to get grid 4
from grid 3 does not seem to re�ect in an equivalent reduction in error. To interpret this one
must keep in mind that the new CVs are mostly located near the lid corners (see Figure 9),
where the increase in the grid density is not so e�cient in improving the accuracy due to the
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Figure 9. The underlying grids of grid 1 (top left), grid 2 (top right), grid 3 (bottom left)
and grid 4 (bottom right) for Re=1000.

singularities. Also, the introduction of many re�nement levels increases the area of the domain
which is near level interfaces, where there are large O(1) truncation errors as mentioned in
Section 3. Already this area is comparable to the area occupied by the whole of the �nest level
of grid 4. Finally, according to Tables III and IV the convergence rates of SIMPLE=multilevel
are similar to those on the non-composite grids but convergence is achieved in less cycles
because successive composite grids di�er less than successive non-composite grids (since the
�nest levels cover only a small proportion of the domain) and so the initial guess due to FMG
has a smaller error on the composite grids. This time using cycles Wk=V with an increased
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Figure 10. Absolute value of �uh along the vertical centreline of the cavity, for various non-composite
(purple lines) and composite (cyan lines) grids, Re=1000.

Figure 11. The 32× 32 non-uniform grid (left) and non-uniform composite grid 1 (right).

number k does not seem to pay o�, since the �nest levels cover less space, and it is more
e�cient to use k=3 or 4.
Next, the procedure was tested on non-uniform grids. Figure 11 (left) shows a non-uniform

32× 32 grid, where the ratio of the heights or the widths of consecutive CVs is r32 = 1:1561.
Again for Re=1000, using r�=0:05 and allowing 3 additional grids produces grid 1 shown
in Figure 11 (right). Then grid 2 is produced by re�ning every CV of grid 1, and grid 3
is produced by re�ning every CV of grid 2. The number of global CVs of each level of
grid 1 and the percentage of the domain that they occupy are displayed in Table V. Also,
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Table V. Lid-driven cavity, non-uniform composite grid 1. Number of global CVs of
each level, and the area that they occupy.

Level 3 (322) 4 5 6 Total
CVs 544 1816 352 256 2968
Area (%) 33.55 63.59 2.83 0.03 100

322 - 1024 CVs
642 - 4096 CVs

1282 - 16384 CVs
2562 - 65536 CVs
Grid 1 - 2968 CVs
Grid 3 - 11872 CVs
Grid 3 - 47488 CVs

0 0.2 0.4 0.6 0.8 1
y

10-4

10-3

10-2

ε hu
|  

 |

Figure 12. Absolute value of �uh along the vertical centreline of the cavity, for various non-composite
(purple lines) and composite (cyan lines) non-uniform grids, Re=1000.

for comparison a series of non-composite grids are constructed, up to 256× 256, which are
such that r64 =

√
r32; r128 =

√
r64, etc. The grid lines of any given grid are also grid lines

of the immediately �ner grid. Figure 12 again displays |�uh| along the vertical centreline on
various grids. Again, the distance between the distributions of successive non-composite grids
is in accordance with the 2nd-order accuracy of the method. However, the distance between
the distributions of the composite grids also suggests 2nd-order accuracy. This is a very
interesting observation in view of the fact that the truncation error has magnitude of O(1)
near level interfaces, as noted in Section 3. Unfortunately, in Reference [31] only results
along the centrelines are given, so it cannot be strictly veri�ed that convergence is 2nd-order
throughout the domain. Of course, 2nd-order accuracy with respect to re�nement of the whole
grid does not mean that the addition of any single level may not even cause an increase in the
discretization error due to the truncation error increase at the new level interface. Comparing
the error distributions of Figure 12, there does not appear to be any clear bene�t in using
the composite rather than the non-composite grids. A possible explanation is that the non-
composite grids are already nearly optimal. This can be seen also from the fact that the two
�nest levels cover very small percentages of the domain. These �nest levels are located near
the top corners where the �ow �eld is singular which limits their contribution towards the
increase in accuracy. Also, despite the fact that they cover only a very small percentage of
the domain, they consist of a relatively large number of CVs due to the non-uniformity of the
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Figure 13. Estimate of �xh on part of the non-uniform composite grids 2 (left) and 3 (right), Re=1000.
The underlying grids are also shown.

Table VI. Square lid-driven cavity, non-uniform grids, Re=1000. The table shows the numbers of
cycles to drop the maximum residual per unit volume below 10−8 (left column), reduction factors (32)

(middle column), and the type of cycle used in each case (right column).

Non-composite grid Composite grid

32× 32 47 0.71 W (2; 2)-1
64× 64 34 0.61 W (2; 2)-1 1 49 0.74 W 2=V (2; 2)-1
128× 128 33 0.51 W (2; 2)-1 2 34 0.59 W 3=V (2; 2)-1
256× 256 46 0.70 W (2; 2)-1 3 47 0.71 W 3=V (2; 2)-1

grid. Also, in consecutive non-composite grids the maximum width to height ratio of the CVs
increases (from 8.8 in 32× 32 to 10 in 256× 256) while this ratio remains constant at 8.8
in the composite grids because the child CVs inherit it from their parent during re�nement.
This means that the spacing of the non-composite grids near the walls is smaller than that of
the composite grids.
Figure 13 shows the estimate �x∗h (14) near the top-right corner on grids 2 and 3, which

is seen to predict that grid re�nement causes the area of high �xh to reduce in size, and the
maximum �xh to increase. The estimate is also seen to predict high �

x
h at the region covered by

the CVs of V e2h ∪V en2h , which is due to the fact that estimate (14) uses the underlying grid 2h
to calculate the truncation error, while actually �xh ∈O(1) at the region covered by the CVs of
V eh ∪V enh . Similarly, the estimate shows high truncation error in a region near the boundaries
which is twice as wide as the actual one.
Table VI displays the number of cycles required to drop the maximum residual per unit

volume below 10−8 (FMG is used) and the residual reduction factors for various cases. The
reduction factors are somewhat worse than for the uniform grids, and this is due to the aspect
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Figure 14. The underlying grids of the �nal grids for Re=100 (left),
Re=1000 (right). Top: �=45◦; Bottom: �=30◦.

ratio of the CVs (it is a well-known problem that multigrid smoothers loose their e�ciency
when the grid spacing in one direction is much smaller than in the other—see Reference [5]).
For the composite grids only the results for the most e�cient type of cycle (in terms of k)
are displayed, in terms of CPU time (level 32× 32 is level 3). It is observed that, in general,
increasing the number of k causes the number of cycles and the reduction factor to drop, but
since it also causes the cycle to become more expensive it does not pay o� to increase k as
far as possible.

6.2. Skew lid-driven cavities

Next, the procedure is tested on a problem which is often used for testing on non-orthogonal
grids, the �ow in a cavity whose sidewalls are inclined at an angle of �=45◦ or �=30◦

to the horizontal level. This problem is proposed in Reference [9]. All sides of the cavity
have a length of L=1m and the �ow and solution parameters are the same as in Section 6.1
unless otherwise stated. Starting from a uniform 64× 64 grid (level 4) two additional grids are
allowed according to a criterion r�=0:001. Simulations are performed for Re=100 and 1000.
The underlying grids of the resulting �nal grids are shown in Figure 14. Again, for Re=100
the truncation error is higher near the lid and top corners, while for Re=1000 this also occurs
at the circumference of the main vortex which is smaller in size than that of the square cavity
and is located near the top-right corner. Figure 15 shows the u discretization error distributions
along the centrelines of the cavities which are parallel to the sidewalls. To calculate the
discretization error the exact u values were estimated with Richardson extrapolation (see
Reference [2] or [22]), using the solutions of the 128× 128 and 256× 256 grids and assuming
2nd-order accuracy. This was done because it was observed that the results presented in
Reference [9] are not signi�cantly more accurate than the 256× 256 solution. For Re=100, the
bene�ts of using local re�nement are not evident, as the solution on the �nal composite grid is
of comparable accuracy as on grid 128× 128 and the two grids also have a comparable number
of CVs. On the other hand, it seems advantageous to use composite grids for Re=1000: in
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Figure 15. Absolute value of �uh along the centreline of the skew cavities which is parallel to the
side walls. Top: �=45◦; Bottom: �=30◦. Left: Re=100; Right: Re=1000.

regions of high discretization error the solutions on composite grids 1 and 2 have nearly the
same accuracy as the solutions on grids 128× 128 and 256× 256, respectively, although they
have signi�cantly less CVs. It is not surprising that local re�nement works better with higher
Reynolds numbers. Convection tends to transport discretization errors generated at regions of
high truncation error to distant locations without alteration, while di�usion (viscous forces)
tends to transport discretization errors with an ever decreasing magnitude as the distance from
the source increases. Therefore, it pays o� more to use re�nement to reduce locally high
truncation errors in the presence of strong convection.
The convergence of the SIMPLE=multilevel procedure, again for a criterion of 10−8, is

shown in Tables VII and VIII, for the non-composite and composite grids, respectively.
Level 1 (8× 8) is used as the coarsest level in the FMG solution procedure. Each outer SIM-
PLE iteration includes a 2nd pressure correction step to account for grid non-orthogonality as
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Table VII. Convergence of the skew lid-driven cavities problems on non-composite grids, and CPU
time needed to complete the FMG procedure.

�=45◦; Re=100 �=45◦; Re=1000 �=30◦; Re=100 �=30◦; Re=1000
Grid V (2; 2)-1 W (2; 2)-1 V (3; 3)-4 W (2; 2)-4

32× 32 17 0.29 52 0.70 12 0.23 20 0.39
64× 64 18 0.29 38 0.64 15 0.28 22 0.46
128× 128 19 0.29 23 0.47 16 0.37 15 0.33
256× 256 20 0.29 19 0.30 22 0.49 14 0.26

CPU time (s) 196 262 362 249

Table VIII. Convergence of the skew lid-driven cavities problems on composite grids, and CPU time
needed to complete the FMG procedure.

�=45◦; Re=100 �=45◦; Re=1000 �=30◦; Re=100 �=30◦; Re=1000
Grid V (2; 2)-1 W (2; 2)-1 V (3; 3)-4 W (2; 2)-4

composite 1 19 0.29 23 0.46 22 0.44 15 0.32
composite 2 21 0.31 19 0.29 37 0.64 15 0.28

CPU time (s) 91 178 286 156

0 5 10 15 20 25 30
-1
0
1

Figure 16. Level 1 for the backward-facing step problem.

suggested in Reference [2]. For �=45◦ convergence is similar as for the square cavity, but
for �=30◦ some additional di�culties arise. For Re=100 V (2; 2) cycles no longer converge
and either W (2; 2) or V (3; 3) have to be used. Also, on composite grids, for � = 30◦ it pays
to increase the number of composite-grid SIMPLE sweeps to 4. Except for the case �=30◦

Re=100, which does not exhibit typical multigrid convergence, in the other cases the con-
vergence rates on the composite grids are about the same as on the non-composite grids. The
gains of the local re�nement procedure in terms of CPU time are not as high as in terms
of number of CVs. This may be due to the compiler used. The di�erence is that our code
allocates memory for the CVs of the non-composite grids all at once (in the form of arrays),
while the CVs of local re�nement levels are allocated one at a time to allow for unre�nement
(a feature not used in the present work).

6.3. Backward-facing step

Finally, a brief description of the solution of the backward-facing step problem (see, e.g.
[22, 32, 33]) is provided to test the method on problems with outlet boundaries. The domain
and level 1 are shown in Figure 16. Like in the aforementioned studies, the narrow channel
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Table IX. Convergence of the backward-facing step problem on non-composite grids.

Re=133 Re=133 Re=400 Re=400 Re=800
Grid V (2; 2)-1 V (2; 2)-4 V (2; 2)-1 V (2; 2)-4 W (2; 2)-4

220× 12 37 0.58 37 0.57 72 0.74 59 0.69 264 0.92
440× 24 36 0.66 37 0.60 61 0.75 55 0.72 110 0.84
880× 48 39 0.70 31 0.60 55 0.74 52 0.73 54 0.71
1760× 96 55 0.86 40 0.69 85 0.89 48 0.73 48 0.73

CPU time (s) 1087 1152 1642 1478 1992

Table X. Convergence of the backward-facing step problem on composite grids.

Re=133 Re=400 Re=800
Composite grid V (2; 2)-4 V (2; 2)-4 W (2; 2)-4

1 33 0.56 26184 CVs 52 0.73 30144 CVs 57 0.72 36912 CVs
2 36 0.61 61296 CVs 50 0.75 69984 CVs 42 0.72 93132 CVs

CPU time (s) 576 952 1579

before the step is not included as part of the computational domain, but a fully developed
velocity pro�le is assumed at the height of the step (x=0). More speci�cally, the top and
bottom boundaries are solid walls, the right boundary is the outlet, while the left boundary
(step) is a solid wall from y=−0:5 to y=0 and an inlet boundary from y=0 to y=0:5 with
a parabolic velocity pro�le u=24y(0:5 − y)U; U =1m=s. The grid is uniform with square
CVs up to the middle of the domain (x=15) and afterwards it becomes stretched under a mild
constant stretching factor. Simulations were performed for Reynolds numbers Re=�UH=� of
133 (low), 400 (medium) and 800 (high) (transition starts at Re≈ 1150). Again, �=1kg=m3
and � is varied according to the Reynolds number.
Tables IX and X contain convergence data for non-composite and composite grids, respec-

tively. Again, FMG is used and the algebraic convergence criterion is 10−8. Level 1 is the
coarsest level of the multilevel procedure. The composite grids are constructed starting from
the 440× 24 grid (level 3) and using Qmom =1kgm=s2, Qmas = 1 kg=s, r�=0:01, allowing two
additional grids. This time it is useful to perform smoothing of corrections according to (30)
for the whole range of Reynolds numbers, and the results of Tables IX and X include such
smoothing. It is observed that, in general, increasing the grid �neness causes the reduction
factor to increase, contrary to the ideal multigrid properties. The situation improves signif-
icantly if the number of composite-grid smoothing sweeps is increased. This makes likely
the following explanation. Since outlet mass �uxes and velocities are not updated during
each multilevel cycle, this means that the composite-grid sweeps are totally responsible for
the reduction of the errors of these outlet mass �uxes and velocities. These errors also con-
tain smooth components, which would normally be reduced on coarse levels in a multilevel
procedure, but now they have to be reduced by the composite-grid SIMPLE sweeps. Like
most single-grid solvers, SIMPLE becomes less e�cient as the grid density increases, which
re�ects in increased overall reduction factors in Tables IX and X. Fortunately, it seems that
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a signi�cant improvement of the convergence rate results with only a small increase in the
number of composite-grid sweeps.

7. CONCLUSIONS

A multilevel algorithm has been proposed for locally re�ned grids, and tested using SIMPLE as
the smoother. The tests show that the existence of local re�nement levels does not adversely
a�ect the convergence rates, which are similar to those of the classic SIMPLE=multigrid
method. Contrary to the algorithm of Reference [20], the present algorithm does not require
the partitioning of the domain into blocks, and solution takes place on the whole composite
grid simultaneously and not block-by-block. Therefore, one expects that the present algorithm
is more e�cient than that of Reference [20]. However, the algorithm of Reference [20] is
more easily parallelizable. Of course, the two approaches can be combined by partitioning the
domain into blocks each of which is itself a composite grid.
Although the main focus of this work has been on the multilevel solver, several issues

related to the local re�nement criterion itself have risen.
Local re�nement was driven by a criterion which tries to minimize the integral of the trun-

cation error by re�ning the CVs which contribute the greatest to this integral. The tests have
shown rather moderate gains from the use of this local re�nement technique, especially at
low Reynolds numbers. The method suggested in Reference [23] appears to be more e�cient,
although a direct comparison cannot be made since di�erent test cases are treated. A factor
which may limit the usefulness of local re�nement is the zero-order accuracy of usual dis-
cretization schemes at interfaces between di�erent levels. This should be further investigated.
The present tests suggest that this does not a�ect the overall 2nd-order accuracy with respect
to re�nement of the whole grid, but one suspects that the high truncation errors at level inter-
faces are indeed sources of additional discretization error, thus limiting the gains from local
re�nement, especially at low Reynolds numbers because viscous terms contribute O(1) to the
truncation error while convection terms contribute O(h). A possible way around this problem
would be to construct more accurate discretization schemes for the CVs which are close to
the level interfaces. Such schemes would also be more expensive, but they would not result
in signi�cant overhead because the number of such CVs is very small compared to the total
number of CVs of the domain (the dimensionality of the region covered by these CVs is one
less than the dimensionality of the computational domain).
An important issue related to the e�ciency of the local re�nement technique is how to

choose the local re�nement parameter r� in (15). Normally, r� should somehow be related
to the required level of discretization error, but this issue was not investigated in the present
work. Alternatively, one may normalize the truncation error estimate by the main diagonal
coe�cients of the linearized discrete system as is done in References [13, 24], to obtain a
quantity which has the same dimensions as the discretization error, and which is an indication
of the contribution of each CV to the discretization error. A di�culty with this approach is
how to obtain an indication of the discretization error of pressure since the continuity equation
does not contain pressure terms.
The O(1) magnitude of the truncation error near level interfaces prevents the use of the

local re�nement criterion there, but in the present work this problem was overcome by simply
not allowing local re�nement near level interfaces. The same problem arises at boundary CVs,
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and there the problem is more serious because a suitable way must be found to identify regions
where re�nement is actually needed. Otherwise, the use of the local re�nement criterion may
result in the pile-up of local re�nement levels near the boundaries, unnecessarily increasing
the number of CVs and causing a large increase in the truncation error near the boundaries.
A possible remedy is to use a re�nement criterion which is based on the �nite element
residual (e.g. Reference [23]) instead of the truncation error estimate. However, the truncation
error estimate may also be used to obtain a more accurate solution (see Reference [25]).
An alternative remedy would be again to construct more accurate discretization schemes for
boundary CVs.
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